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Abstract—Partial discharge (PD) is a phenomenon of electric
discharge typically caused by the damaged or aged insulation
of high voltage equipment in power grids, such as transformers,
switch gears, and cable terminals. In the context of Prognostic
and Health Management (PHM), detection and monitoring of
PD are important to ensure the reliability of electrical assets
and to avoid catastrophic failures. Machine learning techniques
have been successfully applied to discover features and patterns
that correspond to different types of partial discharges [9],
[11]. Recently, PD monitoring systems have being deployed for
assessing the health condition of these equipments continuously
so that the maintenance would require less human effort and
fewer maintenance interruptions to the operation. However,
such systems require labeled data to build data models for PD
detection and classification. Labeled data is expensive to obtain
since it requires domain expert’s manual inputs. Minimizing the
labeling cost is thus an important issue to solve.To the best of
our knowledge, this issue has not been properly addressed in this
domain. This paper proposes an active learning (AL) approach
for accurate analysis of streaming PD data that aims to train
an accurate PD classification model with minimum cost through
selecting the most informative instances for the human experts
to label. Experimental results show that our method is able to
achieve the high classification accuracy of 86.9% with only a
small labeling budget of 1%.

I. INTRODUCTION

Partial discharge is a localised electrical discharge, due to
the inability of the insulation to withstand the local electrical
stress. In the context of Prognostic and Health Management
(PHM), PD detection is a key early indicator for electrical
failures of electrical assets in power grids. It is important to
detect PD in the early stage of insulation damage so that severe
power failure or electrical outage can be avoided. Therefore,
PD detection has attracted a lot of research attention recently
[14], as it can support the reliable performance of electrical
assets through condition based maintenance.

Nowadays, advances in information technologies have made
possible for the power industry to remotely assess and monitor
the condition of the power grid. However, this involves long-
term and continuous recording of high-rate data, which easily
produces a huge amount of streaming sensory data. Machine
learning and data mining techniques have been successfully
applied to extract useful features to learn models from such
data for PD analysis. However in this process, we need to
know the true labels of training PD data for constructing an
accurate classifiction PD model. Noticeably, the labeled PD
data, which is usually provided by experts in power industry
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Fig. 1: Active Learning for PD Detection.

domain, is expensive to acquire due to the human labor cost
as well as the required laboratory test.

To overcome the above-mentioned challenge, we propose
to use an active learning approach [18], [19], [4], which is
able to train an accurate prediction model with minimum
cost of labeling data. The principle is to iteratively query the
labels of just the most informative data instance about the
decision boundary, and thereby to attain an accurate classifier
at significantly lower cost than regular supervised learning. To
the best of our knowledge this is the first work proposed to
use active learning for PD monitoring.

II. METHODOLOGY

Our active learning system architecture for on-line PD
detection is shown in Figure 1. It consists of two main
components, a PD measurement module, where sensors are
deployed and PD signals are collected/pre-processed, and
a PD detection module, where advanced machine learning
techniques are used to learn a model that is able to differentiate
PD signals from noise, and even different PD types (e.g.,
internal, surface, corona PD). The main contribution of the
approach is the active learning part with ability of evaluating
the novelty of PD signals. Only novel signals are then given to
an expert for labeling and are subsequently used to update the
model. It is worth noting that not all data is given to the expert.



The budget management will set the constraints and only the
most informative data instances that is within the budget is
finally given to the expert as illustrated in Figure 1.

A. Feature Representation for PD Signals

For the sensory measurements from PD detectors, we gen-
erally represent them in two different patterns, namely time-
resolved patterns and phase-resolved patterns as shown in
Figure 2. Figure 2(A) shows a time-resolved pattern, i.e., a ¢g—t
waveform, where ¢ is the amplitude (i.e., the apparent charge
or discharge voltage) and ¢ shows the time information. Figure
2(B) demonstrates a phase-resolved pattern (PR pattern), i.e.,
a tuple (¢, q,n) pattern, where ¢ is the phase angle for the
PD pulse, ¢ also refers to the apparent charge or discharge
voltage and n is the number of pulses.

In Figure 2(A), the waveform shows a single PD pulse,
which appears at the time point ¢ 2us, and the whole
signal lasts 10us with 1000 data points (i.e., the sampling
rate is 100 M /s). We can simply digitize this pulse by a 1000
dimension vector consisting of 1000 time-series data points. A
longer waveform, which may involve multiple PD pulse, thus
requires a higher dimensional vector for its representation. In
addition, we can also extract features for pulse shape (e.g.,
the pulse height, the pulse rise and decay time, etc.) from the
time domain [13] and some other properties for pulses from
the frequency domain by signal processing methods.

In Figure 2(B), a point (red circle) is a pulse which can be
represented as a time signal in Figure 2(A) and thus Figure
2(B) shows a collection of pulses. We can obtain a distribution
of maximum amplitude against the phase angle (¢ — ¢ distri-
bution). Statistical moments (e.g., mean, standard deviation,
skewness and kurtosis) for ¢ — ¢ distribution can be derived
from both positive and negative half cycles [5], [3] (positive
half cycle means that the voltage is positive in this half cycle).
Some additional features (e.g., discharge asymmetry) can be
collected to evaluate the differences between the distributions
in both positive and negative cycles. In this section, we will
introduce the features extracted from both waveforms and
phase-resolved patterns.

A common representation for phase-resolved pattern is
based on the phase-window method in [7], [10], [6], [12]. The
phase-window method divides the power cycle with 360° into
several small phase windows and then generates some features
for each phase window. For example, we have 360 windows if
each phase window has a size of 1°. We can then extract some
features in each phase window, e.g., the number of pulses,
maximum amplitude and average amplitude. The statistical
moments of these features over all the phase windows can
be extracted to further represent the given set of pulses [17].

Assume that we have N phase windows and x; is a specific
feature value for the i*" phase window. The mean of z; over
these N phase windows would be = SN 2;/N. If we
consider that phase windows may have different importance
(let p(z;) be the importance of the " phase window),
the weighted mean is thus computed in Equation (1). For
simplicity, the other statistics, e.g., variance (62), skewness

(Sk) and kurtosis (K,), are all defined without considering
the importance for phase windows [5], [3].
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In the above definitions, skewness and kurtosis are calcu-
lated with respect to a reference normal distribution. Skewness
is a measure of asymmetry or degree of tilt of the data with
respect to normal distribution, which has a skewness of zero.
Negative values for the skewness indicate data that are skewed
left (the left tail is longer than the right tail) and positive
values indicate data that are skewed right. Kurtosis is an
indicator of sharpness of distribution. If a distribution has the
same sharpness as normal distribution, the kurtosis is zero.
Negative values for kurtosis indicate a distribution flatter than
normal distribution, while positive values indicate a sharper
distribution.

PD pulses generally occur in both positive and negative
halves of voltage cycle. Some features, including discharge
asymmetry (Asym) in Equation (5) and cross-correlation fac-
tor (F') in Equation (6), can be extracted to tell the differences
between two halves. In Equation (5), N7 is the number of
phase windows in positive voltage cycle. QF Zf\:; xj
and :171+ refers to a specific feature (e.g., average pulse charge,
maximum pulse charge or the number of pulses) in i*" positive
phase window. N~ and Q~ are similarly defined. In Equation
(6), both positive and negative halves of voltage cycle have
N phase windows. x;” and x; are the same specific feature,
but refer to its values in positive and negative power cycles,
respectively.
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Now, we consider 3 features from the phase resolved pattern
as 3 distributions, e.g., the number of pulses, maximum
amplitude and average amplitude. Moreover, we have 4 types
of statistics, i.e., mean, variance, skewness and kurtosis, which
are calculated separately for these 3 distributions. Note that all
these features are calculated for positive and negative voltage
cycles. Hence, we have 3 x 4 x 2 = 24 features in total.
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Fig. 2: (A) Time-resolved pattern (waveform) and (B) Phase-resolved pattern.

B. Budget Manager

Since our goal is to maximize PD classification accuracy
while keeping the labeling costs fixed within an allocated
budget. Here, the budget B is defined as the percentage of
instances that can be labeled for a given time period, which
represents the time commitment of the expert in relation to
the overall set of instances. Once all budget is spent, we can
not ask the expert for labels anymore.

C. Novelty Evaluation

Uncertainty sampling is a commonly used active learning
strategy [18], [19]. The idea is to select instances, which the
current classifier is the least confident about their labels. In the
PD monitoring system, this means that instances with certainty
below a predefined threshold # should be selected. A common
way to measure uncertainty is to use the posterior probability
estimation of the current PD model for the unlabeled instance
and thus select the ones that satisfy the following condition
(Pr(ylzy) < 0), where L is the trained classifier, x, is the
unlabeled instance at instant ¢, and 6 is a pre-defined threshold.

In our algorithm, the threshold 6 is adaptive; it adjusts itself
depending on the incoming data to align with the budget.
The threshold 6 increases to be able to capture the most
uncertain instances when a classifier becomes more certain
(stable situations). Moreover, it decreases to query the most
uncertain instances first, when a change happens and suddenly
a lot of labeling requests appear. Algorithm 1 shows details
of our algorithm. Given a small adjusting step s, the threshold
6 decreases by a portion of (1 — s) when uncertainty of
classification appears (lines 4-9). This aims to request more
labels of incoming instances for updating the trained classifier
L. On the other hand, threshold # decreases by a portion of
(1 —s) when the trained model is sure about its classification
(lines 11-12).

Algorithm 1 Active Learning(x,, B, L, s) [19]

Input: x, - incoming instance, B - labeling budget, L - trained
classifier, s - adjusting step

Output: label € {true, false} indicates whether to request
the true label y;

1: Initialize total labeling cost u = 0, labeling threshold 6 =
1.

2: if (u/t < B) then

3 g = argmaz, Pr(y|xt), where y € {1,...,c} is one

of the class labels.

4 if PL(yt|xt) < 6 then

5: u = u + 1 labeling cost increase,

6: 0 = 6(1 — s) the threshold decreases,

7 Request for label of x;

8 Update classifier L with x

9: return true

10:  else

11: 0 = 6(1 + s) make the uncertainty region wider.
12: return false

13:  end if

14: else

15:  return false

16: end if

III. EXPERIMENTAL RESULTS
A. Data Collection

The PD data was collected from utility industry. The data
are captured into pulses, each of which has the largest reading
(trigger) as shown in Figure 2(A). Then, we aggregate 300
data pulses into a data acquisition or an instance alternatively.
In power industry domain, experts usually analyze and label a
PD instance based on its phase-resolved representation, where
the maximum value and phase angle of each PD data pulse
are extracted for visualization. Then, we generate features
for each data acquisition according to the feature generation



Algorithm 2 Random(z;, B, L)

Input: z, - incoming instance, B - labeling budget, L - trained
classifier

Output: label € {true, false} indicates whether to request
the true label y;

1: generate a uniform random variable &; € [0, 1]
2: if &, < B then
3:  Request for label of x;
4:  Update classifier L with x;
5:  return true
6: else

7:  return false
8: end if
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Fig. 3: Accuracy comparison among different methods.

method mentioned Section II-A. We divide the power cycle
with 360 into 360 small phase windows with a size of 1°. For
each phase window, we calculate three features: the number
of pulses, maximum amplitude, and average amplitude. Then,
we extract statistical moments for each of these features over
all the phase windows, including mean, variance, skewness,
and kurtosis. Moreover, PD pulses generally occur in both
positive and negative halves of voltage cycle. That means we
have 3 x 4 x 2 = 24 features for each data instance. In total,
we have 476 data instances, including 256 noise instances and
220 PD instances.

B. Performance Comparison

We set our algorithm’s parameters as follows: the base
leaner is the nearest neighbor classifier (1-NN) [1], adjustment
step s is 0.01 and the budget is set to a low B = 1%. To
validate our model, we use a prequential evaluation method,
where we test an arriving instance first, and if we decide to
pay the cost for its label then we use it to update the current
model.

We compare our algorithm with a random query selection
method and a full-label method. Details of the random method
is given in Algorithm 2. It generates a random variable & and
compares to the budget parameter B. If the random variable &
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Fig. 4: Sensitivity of the budget.

is less than B, it asks for label of the upcoming instance. The
full-label method asks for label of every upcoming instance.
It plays a role as an upper bound of the two algorithms.
Figure 3 shows accuracy comparison of these three methods.
In average, the random method is the worst one with accuracy
of 75.47%. Tt suffers low accuracy at the beginning and gets
betters later when it gets sufficient informative instances for
training. However, its accuracy dramatically drops when new
PD type appears at data acquisition 160. Since the budget
we set is very low 1%, the random algorithm does not have
enough good samples to update its model. The full-label
method achieves the best accuracy of 98.44% since it asks for
label of each sample. However, this approach is not applicable
in real-life application since it labels each sample. Our active
learning method is superior to the random method and is close
to the full-label method. According to Figure 3, the accuracy
curve of the active learning method is consistently above the
accuracy curve of the random method. On average, the active
learning method can attain high accuracy of 86.87%, which
is better than the random method by 11.4%. Moreover, it is
worthy noting that the active method quickly recovers from
changes of PD distributions when a new PD type appears at
the instance 160.

C. Sensitivity Analysis

In this section, we examine the sensitivity of the two
algorithms regarding to the budget parameter B. We keep other
parameter unchanged and vary the budget parameter B from
1% to 10% with a step of 1%.

Figure 4 shows the sensitivity of the two algorithms re-
garding to the budget parameter. We also plot accuracy of the
full-label method on top for ease of comparison. We can easily
observe that accuracy of the two algorithms increase when the
budget increases. However, accuracy of the random method
slightly drops at a threshold B of 9% comparing to 8%. A
possible explanation is that although the random algorithm
requests more labeled instances, some informative instances
are not requested due to this random process.
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The active learning algorithm is consistently better than
the random algorithm. The more budget is given, the closer
performance of the active learning method is to the full-
label’s performance. With a budget of 10%, the active learning
algorithm can get accuracy of 96.64%, which is only 1.8%
lower than the performance of the full-label method.

D. Comparison among Different Classifiers

In this section, we compare accuracy among different clas-
sifiers. We select five classifiers in our experiment, including
Naive Bayes (NB) [8], decision tree [15], random forest [2],
multi-layer perceptron (MLP) [16], and k-NN [1] classifiers.

We observe from Figure 5 that the Naive Bayes classifier is
the worst one since it assumes independent relationship among
attributes of PD data. Decision tree classifier is better than
the Naive Bayes classifier; however, its accuracy is still low
at 76.05%. Moreover, MLP shows significant improvement
comparing to the decision tree classifier by obtaining accu-
racy of 82.57%. The random forest classifier is the second
best classifier with accuracy of 85.41%. The k-NN classifier
achieves the best accuracy of 86.87%.

IV. CONCLUSION

In this paper, we addressed a practical issue of minimizing
labeling cost for current PD detection systems. To overcome
this challenge, we have proposed an active learning method
that selects most informative instances for labeling. Experi-
mental results show that our algorithm is able to achieve good
accuracy. With a small budget constraint of 1%, the active
learning method helps to achieve accuracy of 86.87%, which is
11.4% higher to the random method’s accuracy. Moreover, we
also examine our method with different base classifiers, such
as Naive Bayes, decision tree, random forest, MLP, and £-NN.
Among these classifiers, k-NN shows its best performance. In
future work, we intend to deploy our algorithm in large-scale
power grids with real-life applications.
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